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Background: Real World Event Detection 
with Location-Based Social Networks

• Real world event
Structured as a collection of descriptive attributes
‣ e.g. Place, Time, Content, ...
- “Baseball game will be held at PNC park from 6:00 PM”

However, attributes are often dynamic
- e.g. Baseball game that gets postponed because of rain
- e.g. A traffic accident occurring on a way and causing traffic 

congestion

LBSN are suitable for extraction of dynamic 
information
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Place-triggered Geotagged Tweets

• Definition
Tweets that have both: 
‣ Geotag metadata 
‣ Content relevant to the associated location

• Research Goal
‣ Detection
‣ Classification
‣ Application
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Detecting Place-triggered Geotagged Tweets
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Related Work
• Earthquake shakes twitter users: Real-

time event detection by social sensors.
T. Sakaki, M. Okazaki, and Y. Matsuo. 
‣  In Proceedings of the 19th International Conference on 

World Wide Web, pages 851–860, 2010.

• Measuring geographical regularities of 
crowd behaviors for twitter-based geo-
social event detection. 
R. Lee and K. Sumiya. 
‣ In Proceedings of the 2nd ACM SIGSPATIAL 

International Workshop on Location Based Social 
Networks, pages 1–10, 2010.
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Preliminary Survey
• Geotagged tweets in Twitter around Japan

Period: From 2011-11-21 to 2011-12-31
Number of sample: 2,000
Classified these tweets to certain types based on their content
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Noise

Report of
Whereabouts

Food
Weather

Back at Home
Moving

Shopping
Traffic

Other Events
Earthquake

Accident

Most of the tweets (42.5%) were classified as noise



Classification of the Place-triggered 
Geotagged Tweets

• Classified to Five types:
Report of whereabouts
‣ A tweet that user refers to his/her current location
Food
‣ A tweet where user shares information regarding current 

food or drink
Weather
‣ A tweet about weather of the location
Back at home
‣ A tweet where user reports the fact that he/she is back at 

home
Earthquake
‣ A tweet in which user reports the feeling of the earthquake
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Approach

• How do we detect Place-triggered 
Geotagged Tweets?
We started with straightforward approach
‣ Report of whereabouts
- Detecting checkin activity 

(Foursquare, Loctouch, Imakoko-now)

‣ Food, Weather, Back at home and Earthquake
- Naive keyword matching method with dictionary
- We assume that people tend to classify tweets mainly by 

distinctive keywords
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Design and Implementation

16

Crawling Module Analysis Module
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Visualize Applications

Social Media
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Interactive Visualization of Place-triggered 
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Evaluation

• Methodology
‣ Creating Ground-truth
- Asked 18 third party people to classify tweets
- 12 men in their 20s
- 2 men in their 30s
- 5 women in their 20s

‣ Dataset
- Geotagged tweets nearby Japan
- Period: From 2012-01-01 to 2012-03-31
- Total amount: 4,524,257
‣ Each participants reviewed 500 tweets which were 

randomly sampled from the dataset
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Evaluation Result
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Type of Tweets Precision Recall F-measure

Report of whereabouts

Food

Weather

Back at Home

Earthquake

93.18% 77.16% 84.42%

53.6% 17.8% 26.7%

57% 21% 30%

54% 23% 32%

76% 66% 71%

Table 1. Classification result by the system

Positive Negative

TRUE

FALSE

40.09% 15.84%

2.18% 41.89%

Table 2. Accuracy rate of detecting place-triggered geotagged tweets

* Harmonic mean

False Negative

False Positive



Future Work

• Expanding the classification
‣ Expand to other countries
‣ More complete categories

• Improving detection accuracy
‣ Linguistic analysis, slang

• Discovering real events
‣ Automatic event detection
‣ Temporal-spacial analysis should be investigated

20



Conclusion
• We defined Place-triggered Geotagged Tweets

‣ Tweets containing both geotag and content-based relation to 
your location

• We classified the place-triggered geotagged 
tweets as 5 types
‣ Report of whereabouts, Food, Weather, Back at home and 

Earthquake

• We conducted evaluation study
‣ Showed that the system can detect place-triggered geotagged 

tweets with an overall accuracy of 82%

• Contact us
hiru@ht.sfc.keio.ac.jp
http://www.ht.sfc.keio.ac.jp/cpsf/
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Twitter Statistics (2011)
• Tweets per second (TPS)

6,939 tweets/sec (Max)
‣ 2011.1.1 0:00:04, JST

• Tweets per day
140,000,000 tweets/day (Average)

• Language
‣ 1. English - 61%
‣ 2. Portuguese - 11%
‣ 3. Japanese - 6%
‣ 4. Spanish - 4%

• Geotagged
0.6% (Jun. 22, 2010)
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Filtering Module
• Classifier

Report of whereabouts
‣ Checkin activity (Foursquare, Loctouch, Imakoko-now)
Food
‣ 86 words
- breakfast, eat, dinner, ...

Weather
‣ 131 words
- sunny, cloudy, rainy, cold, ...

Back at home
‣ 5 words
- back at home, ...

Earthquake
‣ 5 words
- earthquake, shaking, shook, ...
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Applications

• For end-user
‣ Dynamic recommendation service
- Restaurant, Entertainment, Road, ...

• For company
‣ Traffic accident/congestion detection
‣ Efficient advertisement

• For city planner
‣ Provide people moving pattern
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Outline
• Real world event detection

‣ From social networking services

• Place-triggered Geotagged Tweets
‣ New concept of classifying tweets
‣ Preliminary survey
‣ Approach to detect Place-triggered Geotagged Tweets

• Prototype system
‣ Design and implementation

• Evaluation
‣ Using ground truth created by 18 third party people
‣ Future work
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Point of View
• System requirements

System which extract, classify and provide real-time 
dynamic attributes of the event

• Key attribute
Location
‣ Location is the most common denominator for a wide 

variety of events
‣ In many cases, it’s the single most important one

• Data sources
Social networking services are suitable
‣ Twitter
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